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Abstract—Human mind is a mosaic composed of multiple
selves with conflicting desires. How can coherent actions emerge
from such conflicts? The classical desire model of rational actions
depends on maximizing the expected utilities evaluated by all
desires. In contrast, the intention model suggests that humans
regulate conflicting desires with an intentional commitment that
constrains action planning towards a fixed goal. Here, through a
2D navigation game where humans were instructed to decide
between two goals, we explored whether human actions will
demonstrate a distinctive commitment to intention, as compared
to a pure desire-driven agent who acts only to maximize the
expected utility. Results indicated that humans spontaneously
commit to an intention when facing conflicting desires. The
pursuit is persistent even when unexpected disruptions make
the prior intention sub-optimal, indicating the unique ”goal
perseverance” nature of intention. We further explored two
functional hypotheses of intentional commitment: computational
constraint hypothesis and social origin hypothesis. Followed
experiments showed that, first, when humans were given enough
time to plan, “goal perseverance” decreased but still existed,
suggesting that intentional commitment may partially result
from humans’ limited resources, but it’s not all. Second, when
humans are involved in social contexts such as when being
observed or when having another unrelated player in the game,
“goal perseverance” was enhanced, supporting the social origin
hypothesis of intentional commitment. These findings shed light
on the uniqueness of human agency and its potential social origin.

I. INTRODUCTION

Humans are purposive agents who act to fulfill their desires.
While most Artificial Intelligence (AI) systems today are de-
signed to solve one specific task, humans in real life typically
need to decide between conflicting desires. As mentioned in
the Odyssey, the ancient Greek hero Ulysses wanted to hear the
Siren’s song, yet he was also eager to get back to his homeland
safely without being seduced by the Siren. In everyday life, we
mundane people also constantly experience this contradiction
within ourselves. People suffer from conflicting desires as if
they have multiple selves: parts of you want longevity while
another part is addicted to alcohol [26]. This multiple-selves
dilemma has long been discussed in philosophy [27, 13] and
psychology [16], yet, debates remain on how rational actions
can be generated when people desire conflicting things.

A. Desire Model

The classical model of rationality defines rational actions
as the ones that are expected to fulfill desires, as captured by
Hume’s famous claim that “Reason is and ought to be the
slave of the passions”. Following this tradition, the classical
philosophical model of actions asserts that desires, despite
their complexity and incompatibility, are sufficient for di-
rectly generating coherent actions when combined with beliefs
[11, 2]. For example, my intention to turn on the light is
adequately explained by my desire to have a clear view and
my belief that I can see better with the light on. While this
seems to be intuitive when the desire is simple, how could
the desire model handle complicated situations with multiple
desires in conflict with each other?

Modern decision theory based on the desire-belief model
offers a solution using the probabilistic nature of expectation
calculation. In the mathematical formulation, desires can be
treated as a utility function that takes a state as input and
outputs a scalar representing the desirability of the state.
Multiple-desire problems can be considered as having multiple
sources of utility for reaching different states. A rational agent
does not need to make the hard choice among desires and can
simply act to maximize expected utility (MEU), where the
expectation is jointly evaluated by the probability of all future
states and how well the states can satisfy all desires [39, 24].
In this tradition, there is no limitation on the complexity of
desires, as long as the expected utility is fulfilled. Here, the
critical part of generating rational actions is to fulfill a given
desire, but not to choose one from multiple desires. This line
of rationality echoes Aristotle’s assertion that deliberation is
always about means, never about ends.

The desire model, like models based on Markov Decision
Process (MDP) [7], has a profound impact on modern AI.
Models such as deep reinforcement learning can solve MDPs
approximately in high dimensions and generate complex intel-
ligent behaviors, reaching human-expert level performance in
games like Atari [22] and Go [31, 32]. The desire model is also
prominent in cognitive psychology, particularly in the studies
of Theory of Mind (ToM). It has been assumed that humans
spontaneously explain others’ actions by attributing them to



a combination of beliefs and desires [15, 41, 42]. Under this
framework, researchers take the desire model as the default
model of the mind that needs to be inferred. More recently,
ToM has been modeled by Bayesian inverse planning [3] with
two components: a forward planning process that assumes an
agent acts rationally based on its mental states, formalized
as P (action|mind); an inverse planning process that uses
the Bayes rule to infer the mind as being able to explain
the planning process of observed actions: P (mind|action) ∝
P (action|mind)P (mind). The key of this model is the
planning engine that computes P (action|mind).

B. Intention beyond Desire

However, contemporary philosophers [29, 19, 8] argue that
there is a gap between desires and the generation of rational
actions: a deliberate process irreducible to a simple complex
of desires and beliefs. Searle claims that in general, only a
small portion of rational actions are sufficiently induced by
beliefs and desires. Consider a drug addict with a predominant
desire to take heroin and takes whatever he believes to be
heroin. Here the drug addict’s belief and desire are sufficient to
determine the action, but that is hardly a model of rationality.

To fill the gap, generation of rational actions must presup-
pose the process of deliberation. In psychology and neuro-
science, the studies of volition [18], self-regulation [5], self-
control [1, 14], and goal pursuit [30, 23] suggest that there
is a unique process for the human mind beyond desires and
passions, which lies at the core of human agency. It has been
suggested that intention is a mental state distinct from desires,
which is defined as the deliberate choice among potential
desires and the commitment to a course of action [8]. In
this belief-desire-intention model, desires do not directly drive
human actions but are instead mediated by intentions [29, 19].
Intention-based actions do not consider the expectation of
all future states evaluated by all desires but are committed
to bringing about one fixed future [6, 10]. Therefore, any
conflicting nature of desires must be “filtered out” before
forming an intention to act: an agent is allowed to desire
conflicting things but not to intend conflicting things [8, 28]. In
other words, intention serves as a resolution settling the debate
between conflicting desires: the course of actions is determined
once the intention is established, and the execution of those
actions will no longer be influenced by unchosen desires.

C. Why Commit to an Intention?

1) Computational constraint hypothesis: Humans are re-
source limited agents. Commitment may serve as a bounded
rationality [33], allowing agents with limited computational
resources, like humans, to apply a prior deliberation for a
future conduct without being time-sliced agents who always
start from scratch [8]. Empirical studies on commitment first
explored by economists demonstrated that humans are not
fully rational as utility-maximizers due to the fact that their
preferences may change over time, referred to as the “changing
tastes” problem [34]. To forestall the changing tastes, com-
mitment has been proposed as a regulation device to deal

with the temporal fluctuations of preferences [35, 25, 26, 9].
Intuitively, considering the expectation of all desires demands
massive computational resources, while committing to a fixed
intention helps reduce the computational burden of online
decision making for rapid changes both of tastes and of the
environment.

2) Social origin hypothesis: Humans are social animals,
the unique aspects of human mind may be shaped by social
interactions [40, 28, 20, 37]. Being committed means being
predictable to others. This resonates with the evolutionary
perspective that humans evolved with a high color contrast
between the white sclera and the darker colored iris to better
convey attention with different displacements of the gaze
[21, 38]. Similarly, commitment makes humans’ intentions
more readable, suggesting a social origin hypothesis that hu-
mans’ commitment emerges from a communicative intention
as people try to better demonstrate themselves to others. This
also supports the hypothesis that while ToM was originally
developed to understand others, it has been internalized to
monitor one’s own actions due to the evolutionary pressure
of cooperation and communication [40, 20], where an agent
makes its own mind more explainable and predictable from an
intentional stance [12]. This social perspective has also been
explored in developmental psychology, showing that children
demand commitment from their partners, regulate partners
when they are being difficult, and are voluntarily constrained
by joint commitment [37].

D. Present Study

Here we examine the commitment nature of intention using
an individual planning task. The task was deliberately designed
to follow an MDP setting, where commitment is not necessary
and may even compromise the optimality. We started by ex-
ploring whether humans demonstrate distinctive commitment
to intention, as compared to a baseline desire-MDP model
that acts to maximize the expected utilities over many desires.
Then, we examined two functional hypotheses of intention,
computational constraint hypothesis and social origin hypothe-
sis. To test the computational constraint hypothesis, we studied
whether an increase in computational resources would make
people less biased to commitment. To test the social origin
hypothesis, we examined whether people’s commitment to
intention will be enhanced when they are involved in certain
social contexts.

II. EXPERIMENT

The experimental task of an agent was to navigate to one
of two equally desirable destinations located apart from each
other on a 2D map. We introduce unexpected disruptions dur-
ing the agent’s navigation in order to explore whether people
would show commitment to one fixed destination even when
disruptions made it sub-optimal. A disruption was introduced
as a “drift” that nullified an agent’s action by placing the agent
in one of the nearby cells except for its intended position
(see Fig. 1). In cases when a carefully engineered drift places
the agent closer to the destination that the agent was not



pursuing, we were particularly interested in whether the agent
will continue with its previous goal or change its goal. A
pure desire-driven agent would always move towards the other
destination as it brings higher expected utilities. However, if
human planning involves a deliberate process beyond desires,
they would show commitment to the original destination by
fighting against the drift to return to the planned course of
action. Moreover, we are interested in to what extent will
the commitment, if it exists, be affected by its potential func-
tional roles. Here we explored two functional hypotheses of
intentional commitment: computational and social functions.
If commitment to intention serves to reduce computational
burden, an increase in the time resource for deliberation would
make people less committed. If commitment to intention
serves to support potential social interactions, people in social
contexts would show more commitment than when they act
alone.

A. Design and Procedure

There were 10 trials in total. Each trial consisted of a
15×15 grid map with one agent and two destinations. The two
destinations were placed so that Manhattan distances between
the agent’s starting position and two destinations were equal,
ranging from 7 to 13 with 10 as the mean. In the first 9 trials,
as participants were instructed, the disruption occurred with
a 10% probability at every time step, resulting in roughly
1 drift per trajectory. Across trials, these “random” drifts
were pseudo-randomly generated for each participant with one
constraint: there were 3 disruptions in every 3 trials. There
was no constraint on how disruptions were distributed within
the 3 trials. In the last trial, without participants’ awareness,
the disruption was not random but deliberately engineered: it
was triggered when the agent first revealed its destination by
executing an action towards one destination while away from
the other. This deliberate disruption fights against the agent’s
action by placing it in a cell to the opposite side of its action
(Figure 1). As a result, the agent would end up being closer
to the destination not revealed by its action. Participants were
explicitly informed that the environment was not deterministic:
at every step, there was a 10% probability that the agent’s
action could be disrupted by a random drift that pushes it to a
nearby cell. A trial ended once the agent reached a destination,
immediately followed by a new trial with a new map.

We designed 5 between-subject conditions for participants.
• Individual Real-time Condition. Participants were in-

structed to control an agent to reach any of the two
destinations as soon as possible with the least number of
steps using the four arrow keys (up, down, left, and right)
on a standard keyboard. In this condition, participants
performed the task alone in a single room with laboratory
computers. There was no time delay after disruptions.

• Time Delay Conditions. The design and procedure were
the same as the Individual real-time condition except
there was a pause after each disruption (both random and
deliberate) occurred, allowing for more time to re-plan.
During the pause, participants would see a blank phase
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destination
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(opposite to its action)
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Destination B - not revealed
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Fig. 1: Design of disruption. For random disruption, both time
step and direction of the disruptions were randomly sampled.
For deliberate disruption, both were designed to push the agent
away from the destination the moment it was revealed.

with the instruction “please wait” presented in the center
of the screen. Participants were given clear explanations
on this time duration before the experiment. Duration of
the pause was manipulated in two conditions:

– Individual-2s-delay: Duration of the pause was 2s.
– Individual-5s-delay: Duration of the pause was 5s.

• Social Context Conditions. The design and procedure
were the same as the Individual real-time condition except
participants were grounded in two kinds of social context:

– Observed real-time condition. Another person sat
behind the participant by a distance. Participants
were told that he/she was an experiment assistant
to help with any potential computer problems.

– Dual real-time condition. A second independent
player was present in the game and performed the
same task as in Individual real-time condition. In this
task, one agent was controlled by the participant and
the other controlled by a desire-driven agent. There
was no interference between two agents: they could
enter the same cell or go to the same destination
without conflicts. Pairs of participants unfamiliar
with each other were recruited to attend the exper-
iment together. The two people were introduced to
each other and read the instructions together. They
were then assigned to two separate rooms with com-
puters visibly connected via a network cable, making
them believe they were doing the task with the
other person. An experimenter unfamiliar with the
participants impersonated the absent one if anyone
in the pair did not attend the experiment as arranged.

B. Participants

Human participants were adults recruited from the Zhejiang
University participants’ pool. The sample size was set to n
= 50 for each condition. Data is still being collected for
Time Delay Conditions, with 20 participants for the two Time
Delay Conditions as of now. A total of 190 participants joined



the experiments for course credits or monetary payments (10
RMB). All participants were given informed consent before
the experiments. All studies were pre-reviewed and approved
by the institutional review board at the Department of Psychol-
ogy and Behavioral Sciences, Zhejiang University. Researchers
who collected the data were blind to the hypotheses of the
study during data collection.

C. Desire-MDP model
We adopted the pure desire-driven agents as a baseline.

We employed MDP as an implementation of the desire-model
following the MEU principle. Desires are defined as sources of
rewards, and an agent acts to maximize its expected long-term
future reward. The definition of an MDP includes a state space
S, an action space A, a transition function T (s, a), and a utility
function R(s, a). Solution to an MDP is an optimal policy
π, which takes state s as input, and outputs a probabilistic
distribution of actions, P (a|s). An agent acts by sampling
an action from this distribution. The above definition and the
solution to an MDP do not involve a formulation of intention.

1) State space: The agent’s state was its location, defined
as a tuple with 2D coordinates (Xcoordinate, Ycoordinate). The
size of the map is 15x15, composing a state space of size 225.

2) Action Space: The agent can travel one cell in one of
the four directions: a ∈ {(0, 1), (1, 0), (0,−1), (−1, 0)}.

3) Transition function: We used a stochastic transition
function that takes state s and action a as input and outputs
P (s′), a probability distribution over the next state s′. In
the experiment, the two destinations were set as the terminal
states. During navigation, the agent can only reach 4 nearby
states. The agent moved to the cell in the direction of its
action with probability 9/10, with the other nearby cells evenly
splitting the rest of the 1/10 probability.

4) Reward function: The reward function takes the state s
and action a as input and outputs a scalar as the short-term
reward. Here the reward has two components: 30 for reaching
any destination, and -1/30 for every movement on the map.

5) Solving MDP: The optimal policy of MDP was solved
by value iteration using the Bellman optimality equation [7]
of the value function V , which is an iterative bootstrapping
process. At time t+1, the new value function Vt+1 is derived
from the value function Vt. The optimal value function V ∗can
be achieved when this iterative process converges.

V ∗(s) = max
a

[R(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′)] (1)

Here γ is the discount factor that is fixed to be 0.9 in all MDP
simulations, which is a commonly used value.

6) Policy: The optimal policy can be derived from the
optimal value function V ∗ in two steps:

First, an optimal action-value Q∗ is derived from V ∗:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

p(s′|s, a)V ∗(s′) (2)

Then, we derive a Boltzmann policy for the probability of
taking an action a given state s as proportional to Q∗(s, a) :

pπ(a|s) ∝ exp(βQ∗(s, a)) (3)
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Fig. 2: Experimental results. Percentage of participants who
reached the original destination in the last trial of deliber-
ate disruption, with different conditions and the desire-MDP
Model baseline.

The Boltzmann policy takes β as a rationality parameter.
When β → 0, the agent acts almost randomly; when β → ∞,
the agent chooses the action greedily based on the optimal
Q-value. Here we chose β = 2.5 following previous studies
modeling human action with MDP [3, 4]. With this value, the
action selection will be dominated by the maximum Q(s, a),
but still deviates from it with a small probability, to capture
the fact that human decision-making is not entirely optimal.

D. Results

In the last trial with a deliberate disruption, human partic-
ipants across all five conditions tended to choose the original
destination (see Fig. 2 Individual real-time condition: 70%;
Individual 2s-delay condition: 30%; Individual 5s-delay con-
dition: 30%; Observed real-time condition: 86%,; Dual real-
time condition: 88%) compared to the desire-MDP model that
always chose the closer destination (0%) (all ps < .001 by
Fisher’s exact test).

In the Individual Time Delay Conditions, participants in
both 2s-delay and 5s-delay conditions were less likely to
choose the original destination than participants in real-time
condition with no time delay (30% vs 70%, χ2 = 9.42, p =
.002, Cramer’s ϕ = 0.37).

In the Social Context Conditions, participants in the Dual
condition were more likely to choose the original destination
than participants in the Individual condition (88% vs 70%,
χ2 = 4.88, p = .027, Cramer’s ϕ = 0.22). Participants in
Observed condition were also more inclined to choose the
original destination as compared to the Individual condition,
with a borderline significance level (86% vs 70%, χ2 =3.74, p
= .054, Cramer’s ϕ = 0.19). There was no significant difference
in commitment between the Observed and the Dual condition.

These results demonstrate that, compared to a desire-driven
agent who acts only to maximize expected utilities, humans



act while spontaneously committing to their intention. This
self-commitment was influenced in two ways: people showed
less commitment when they had more time and resources to
make a decision, and more commitment when they were under
the social context of being observed.

III. DISCUSSION

Our empirical results showed that humans spontaneously
commit to their intentions. They cling to prior inertia and resist
re-planning even when environmental changes have made their
intention suboptimal. This self-commitment may result from
humans’ limited computational resources since sticking to one
plan reduces the budget for online decision-making. Thus,
people are more committed to their intentions when having
fewer computational resources.

Still, the extent of the commitment is striking considering
the simplicity of the navigation tasks we used here—even
with enough time to re-plan for more optimal decisions as the
environment changes, people still stick to their prior intention.
This suggests that commitment may also serve certain purpose
other than saving computational costs.

Our results that people are more committed in social context
provide hints on the origin of human intentional commitment.
Humans are born in a social world. Being a committed agent
can greatly facilitate interpersonal coordination during social
interactions. Imagine our ancestors hunting a lion together,
they won’t stand a chance unless they both commit to it
simultaneously and persistently. Any of their flexibility of
that commitment will place each other in peril. For these
reasons, commitment has been mostly studied in the context of
collaboration as an obligation that binds each other [17, 36].
This social constraint of joint commitment may be eventually
internalized as a self-constraint that one uses to regulate
one’s own mind. Even when people act alone, they still
spontaneously demonstrate their commitment as if they are
making their minds predictable from a third-party perspective.
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